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1.0 INTRODUCTION

The work presented in this report has been directed
in two rather different areas, which are discussed separately
in Sections 2.0 ard 3.0.

In Section 2.0 we describe a new method of computing
the dipole autocorrelation function for molecular pressure
broadening. Ve believe that numerical implementation of this
approach should yield reliable estimates of far-wing absorp-
tion by H20 and other molecular species.

In Section 3.0 we document the software which has
been developed for updating the AFGL Line Parameters Compila-
tionl/ for asvmmetric rotor molecules. In Section 3.0 we
describe the function of the various editing, sorting, and
comparison subroutines which are used in the updating proced-
ure. A listing of the various H20 bands for which the pro-
cedure has already been applied is provided. These updated
bands have all been incorporated into the 1980 Edition of the
AFGL Line Parameters Compilation.




2.0 A NEW APPROACH TO THE DIPOLE AUTOCORRELATION
FUNCTION FOR MOLECULAR PRESSURE BROADENING
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The work reported in this section has benefited
greatly through active participation by S. A. Clough of Air .
Force Geophysics Laboratory, and by R. H. Tipping of the
University of Nebraska at Omaha.

The absorption coefficient of a gas may be computed
as the Fourier transform of the dipole autocorrelation
functiong/

O(t) = <(0)}(t)> ‘ (1)
- iHt | _iHt
where u(t) = e "h g e h is the Heisenberg dipole moment
operator, and where the average denotes a statistical average
over the canonical thermal equilibrium density matrix

p(H) = exp(-BH)/Tr{e BH}, (2)

The absorption coefficient can then be expressed in
three equivalent forms:

2
alw) = AW Nad. X"(w), (3)
with
X"(w) = tanh (B) [ dE 10t ru0ey 4 g0, (4a)
= (1 - e”BHYy gL omlut gy, (4b)
= [ %}‘,- e 19t [act) - ¢C-t)1. (4c)

The equivalence of the above three formulas is con-

tained in the time-domain statement of the Fluctuation-Dissi-

pation Theoremi/ (FDT),




¢(-t) = ¢(t + ipH), (s)

which follows from cyclic invariance in expression (1) for
the dipole correlation function.

The statement of the FDT in the frequency domain is

¢(-w) = e B g(u), (6)
. where
¢(tw) = %; [ at e~ lut o(2t). (7)

In near-wing pressure broadening theory, it is not
terribly crucial that the FDT be satisfied in any approximate
theory. This is not the case in considering far-wing absorp-
tion, as the following simple example will illustrate. In
particular, if one evaluates formulas (4a) -~ (4c) using the

well-known impact approximation,if one obtains the results

X"(w) = tanh (Egﬂ) ! py I<illul]f>]?
if
. % [ r + r 1, (8a)
(w-wfi)zﬂ‘2 (w+wfi)2+l"2
- BHw . 2 1 r
X"(w) = (1 - e ) p. 1<i||ullf>]? » = (8b)
gf * T (wmwgy)24r? ’
b 8
X"(w) = § g |<ilfull£>]?
if
4 % [ r - r ]o (8C)

2, p2 2,p2
(w-mfi) +T (w+wfi) +T

In the extreme far-wings (w >> Wes for all strong
lines), these three formulas predict very different results
for the estimated absorption. Thus we view it as crucial that
any treatment of far-wing absorption should satisfy the FDT.

e e e et PSS aniuaahteitundaniinid i atasteniniiibndennd N “‘—*4‘—-1-&




In the course of the present contract we have formu-
lated a method of constructing the autocorrelation function in
such a way that it satisfies the FDT on a microscopic basis.
The approximations of the theory are:

a. The binary collision approximation (this is well-justi-
fied in the far wings for atmospheric densities).

b. The unccupled line approximation (the validity is not
easy to assess, however, one might expect line-coupling
effects to average out in the far-wing region).

C. Isotropic interactions are treated exactly; anisotropic
interactions are treated by second order perturbation
theory. This latter approximation might be improved on
by making the approximation of ignoring the effects of
time-ordering in treating various time-development
operators.

A complete derivation of the formalism described
above is presented in Appendix A. Here we briefly outline a
few of the more relevant results.

Within the uncoupled line and binary collision ap-
proximations, we find that the autocorrelation function is

given by
() = v T ples 2235 + 1) [<igllullig>|?
lils .
i
. . - . ] [ 9

This result satisfies the FDT provided Cfi(-t) = Cif(t+iﬂﬁ).
For the Cif(t) correlation functions, we obtain

C;plt) = exp {Np [q;e(t) - 11} (10)

where Np is the number of perturbers, and with




L - Y
i qif(t) = T?T%TTY m.gf (jflmfmljfljimi) . (jflm%m|jfljimi)

! Mmemem

E; . s Tr {p(Hy) <3;m[UCt-igm [§,m,>

<jemg [UCH)T |5 m1>). (1)

In this expression, the bracketed quantities are Clebsch-Cordon
coefficients, and the U's are time-development operators.

From Eqs. (9), (10), (11) one can indeed show that the FDT is
satisfied, along with the reality condition Cif(t)* = Cif(-t).

Going to second order perturbation theory in the
anisotropic interaction, we find

: [a;e(t) ~ 13 = K;(£) + Ke(t), (12)
with
1
Ke(t) = = =7 p(e;) plez)
£ p J 4
SR
oI leigduplvlifateg > l? £, (13)
j%J'E'

where p(eJ), p(ei) are density matrices for the internal
states of the perturbers, and the translational motion of the
relative coordinate (respectively), and with

. . -iw .t

£(t) = - A (¢ - LLe b - 1)y, (1ua)
af af
(1-cos(w_,t)] .
= @B "~ . i [w t - sinCw )] (1ub)
w .2 - w .2 aB aB
af ol
with

1l (1%)

“ag * K (440K T Ejparke)-




LT

Similarly

1
K:(t) = = =T op(e,) ple)
i 2 J k
"o
oI l<duwplviaiatege|? £, (16)
J

£(t) = i ((t - igm)

L (e lwgg(t-iBM) _ 44y (17a)

or

" [1+ Bhwaa - eﬁnwas cos waBt]

)

BHw

+
|

[waBt - e aB sin waBt] (17b)

=1
wyg -‘K-(e. JE - ejiJ'f')' (18)

For simplicity, in writing down the above expressions we have
suppressed Clebsch-Gordon coefficients and m-summations, which
are important only for numerical calculations.

For 1afge times, it may be shown that the above
equations yield the impact approximationili/ (including both
width and shift), i.e. the argument of the exponential in Eq.
(10) is a linear function of t.

At very small t, the correlation function behaves
essentially as a Gaussian. This implies that all time-deriv-
atives of Cif(t) exist at t = 0. This in turn implies that all
momentsg/ of the lineshape function (in the frequency domain)

are well-defined and finite.

In order to implement the above theory for numerical
computation, the following tasks need to be performed:




a. The Clebsch~Gordon algebra must be done (this has already
been carried out for the case where the anisotropic in-
teraction V is taken to be a dipole-dipole interaction.

b. The relative coordinate wave functions lwi>’ which
satisfy

niv?

o+ Vo vg> = exligs (9
where V0 is the isotropic potential, need to be
calculated.

C. Matrix element of the form
1l
<w;.|;;|w;>

must be evaluated.

d. Various summations over quantum indices need to be car-
ried out, and a Fourier transform of Cif(t) must be per-
formed to yield the lineshape function Cif(w).

In previous reports we have discussed some of the
problems associated with obtaining an accurate Fourier trans-
form of Cif(t). In particular, one must accurately sum con-
tributions of Cif(t) from time values which may differ by
three orders of magnitude (e.g. the difference between a dura-
tion of collision Tqo and a time between collisions Tc). We
- have also discussed a "difference function" technique for per-
forming the Fourier inversion. In this method, one writes

C(t) = C (t) + Cyspe(t), (20a)

Basis
where

Cpasis
The basis function is chosen to have two basic properties:

a. c (t) has an analytic Fourier transform.

Basis




b. Cdiff(t) vanishes at large t, el.minating the need to
integrate over large t values.

We have previously reported application of this
scheme to simple (real) correlation functions such as the
Anderson-Weiss correlation function. Here we briefly present
some results for a complex-valued correlation function, with
a time-dependent f(t) function given by Eq. (1l4).

The furnction we have chosen has the form

c(t) = e~oF(E) (21)

where a is a constant, and

o k
F(t) = | Yo dw e” KT £(1), (22)
0
with
l-cos(w, ~w )t
£(t) = k rft
(wk-wrot)
sin(w,-w )t
kK "rot
+ l {t - }o (23)
(w Wy = rot1 Wy ~Yrot

Although this model represents a rather gross simpli-
fication of the general theory, we note that f(t) has the same
time-dependence as in Eq. (14), with the identification weg *

(w:

ot mk). If we choose o to have the value

a = —L— pot/kpT, (24)
ot
then T can be interpreted as the impact-approximation half-

width, and the long-time behavior of C(t) is given approxi-
mately by




H oo kT 1/2 B 2
-« exp{- il t [e "kgT" (g7 - 2 ] dy &Y 1}. «(25%)
. rot 0

(The above expression ignores small terms in the arguments of
the exponentials which behave as constants at large t.)

To apply the difference function method, we have
modeled the basis function cBasis(t) such that the real part
is a convolution (in time) of a Gaussian and an exponential,
and the imaginary part is the derivative of such a function.
This choice has the correct properties that Re C(t) is even,
while Im C(t) is odd. The adjustable constants in the con-
volutions are chosen such that Cdiff(t) + 0 for large t. We

have also been able to choose C (t) such that Cdiff(t)

basis
also vanishes at t = 0.

It turns out that one can obtain an analytic approx-
imation to the Fourier transform of Eq. (21), which is valid
in the far wing, by expanding to first order in the density,
i.e.

C(t) = 1 - aF(t). (26)
This can be Fourier-transformed analytically,-and discarding
spurious delta function contributions at the line center w = 0

(which are improperly treated by the above expansion), one
obtains the result

C(w)
Lor '¥

Aw w +w 1/2

R(w)

- - rot
= e E-B-T (-z);t—) e(wrotw), (27)

where 6 is the unit step function

6(x)

l, x>0

0, x < 0,




and where

r
w2+r2

e L

CLor(w) =z

is the Lorentzian lineshape function.

In Figures 1 and 2 we show plots of the real and
imaginary parts of the difference function Cdiff(t)’ as used
in the numerical Fourier transform of C(t). These functions
are plotted versus a length variable x = 2mct, and the main
point to notice is that the difference functions oscillate to
zero at large x (large t).

The recults of our numerical Fourier transform,

rot = 100 cm™!, T = 286°K are
shown in Figure 3. To within plotting accuracy, the results
agree well with the predictions of the analytic formula (27).

with the choice of parameters w

The above model is rather too crude to assign much
physical significance, e.g. in a more realistic model, Wrot
would be replaced by a whole distribution of frequencies (both
positive and negative) determined by the collision dynamics
and multipole selection rules. In spite of these complica-
tions, the results of the model calculation provide some con-
fidence that an accurate Fourier transform of realistic corre-
lation functions can be obtained using the "difference func-

tion" technique.

10
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1.7

3.0 SOFTWARE FOR UPDATING ASYMMETRIC ROTORS ON
THE AFGL LINE PARAMETERS ATLAS

The procedure we have employed to update H20 bands
for the AFGL Line Parameters Compilation is based on the pro-
cedure which we first developed to treat the v, band of
H20(161). The development of the method is based on two de-
mands; to eliminate entirely the making of typographical er-
rors when updating bands and, given an old and a new data
set, to construct from these data the best and most complete

.data set possible for addition to the AFGL line atlas. Some

of the problems that can occur when dealing with very large
data bases are: 1) usually the new data does not fully re-
place the old, thus the final data set must be a controlled
merging of the two sets; 2) when parts of the new data set

are in question, both new and old data are carefully analyzed
to determine which is the better and hence which will be re-
tained for the next version of the atlas; 3) sometimes mul-
tiple quantum assignments of the lines occur, when they do
they must be found and eliminated. Once the procedure has
been applied to a band, we generate comparisons of the old
data to the new data to display the changes that have occurred.
We have also found it advantageous to keep track of the source
of each parameter for both future updating and for discussions
with the users of the AFGL line atlas.

Below we give a general discussion of the software
systems that make up the procedure, and in Figure 4 we give a
flow chart of the method. Although there are some changes
that must be made from band to band and from molecule to
molecule, we have attempted to keep the procedure as general
as possible for asymmetric rotor molecules (i.e. HQO, 03,
802; etc.). To date the procedure has only been applied to
vibration-rotation bands of the water molecule, and ir Table
1 we list the updated bands along with pertinent information
describing the data sets. All the new parameters, i.e. line

1y
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positions, intensities, and lower state energies of transi-
tions for these bands are taken from C. Camy-Peyret, J. M.
Flaud, et a1,6’17/ and we wish to thank these authors for
making their data available to us. All of these bands are
present on the 1980 version of the AFGL Line Parameters

Compilation.

The start of the procedure is dependent on the form
in which the new data is available to us. If we are not able
to obtain the data directly from the source, we construct hand
punched card files of the published data. These files must
be carefully checked for typographical errors. Once the new
file is verified to match the published results we extract
the corresponding band from the AFGL tape and both files (new
and o0ld) are run through the programs QCHECK and IDCHECK
which test quantum assignments according to selection rules
and band assignments, respectively. From this point on we
simply refer to the data used in updating the band as the
"new data" and the data from the AFGL tape as "old data."

Once we are assured the data files are correct we
frequency-sort each file and rotational-quantum-number-sort
(J', Ka', Ke', J", Ka", Kc") each file. The new quantum-
number-sorted file is input to the program MSFGENF, and the
old quantum-number-sorted file is input to the program MSFGENA.
MSFGENF and MSFGENA create mass storage files of the new and
old data sets respectively. These mass storage files are con-
structed by the unique rotational quantum number assignment
of each transition and can reduce the effort of searching for
a particular line by several orders of magnitude. The result-
ing mass storage file has as its key the upper state rota-
tional quantum numbers, and each record contains all transi-
tions with the same upper state assignments and different
lower state assignments. The index key of each record is
calculated by the formula INDX = J'(J'+1l) + Ka' - Ke' + 1.

If a file does not contain any transitions belonging to a

17
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particular index, a flag is written to that index meaning no
information available for that index. This check is incor-
porated into all programs which read the mass storage files.

Once the mass storage files (MSF's) are constructed
they are tested by the program MULTQ which checks for multiple
assignments which, due to the structure of the MSF's, are
easily uncovered. If any multiple assignments are found, the
extra lines are deleted from the quantum-number-sorted file,
the MSF is reconstructed and checked again by MULTQ, and this
is repeated until the final MSF's are known to be correct.

We next work with the new and old frequency sorted
files and the new and old mass storage files. As stated ear-
lier, it is required to have a tabulated listing of the dif-
ferences between the new and old data. This is done by the
program COMPARE which uses the frequency-sorted new file aund
the old mass storage file. This yields a line-by-line list-
ing of the difference in the data sets along with several
types of flags that signal large differences in the data.
These listings have proved very useful in consultations with
users of the AFGL Compilation.

The frequency-sorted new file is also used in the
program HWGEN. The new files for H20 usually contain the
transition frequency, the strength of the transition, the
lower state energy, and quantum identification of the transi-
tion. Before the file can be used for the Atlas we need to
add the air-broadened half-widths for the transitions. HWGEN
adds to the new file the corresponding half-widths as calcu-
lated by Davies and Oli.lﬁ/ In addition, the program also
adds ID labels to identify the source of each datum (five ID
labels in all - source of the transition quantum numbers, the
source of the frequency, the strength, the half-width, and
the lower state energy). The ID becomes important in future
references concerning the quality of the data for a particular
line. The ID labeled file containing the corrected half-
widths is now referred to as the frequency-sorted new file.




- The fréquency-sorted old file and the new MSF are

i used in the program OLDLINE which selects all lines in the

E old data which are not present in the new data. This file,

1 which is called the missing line file, is then run in the pro-
gram TAGMISS. The TAGMISS program uses two MSF's containing
the rotational energy levels of the upper and lower vibra-
tional states of the band in question to add to the missing-

line file the line positions and lower state energies derived
from the new data. This is not always possible since some of
the energy levels for certain vibrational states are unknown;
in these cases the old data is retained. The program adds ID
labels to the lines according to the types of changes that
have occurred. Finally all lines that retain the old fre-
quency are inspected and the line position is estimated from
the new data. This is done to remove any obvious typograph-
ical errors in the old data.

At this stage of the procedure we have an ID labeled
new file and an ID labeled missing line file from the old data.
These two files are fed into CMPLETE which, using mass storage
techniques, adds to the two files whenever possible more accu-
rate half-widths computed by a method similar to reference 18
but with a more correctly determined Anderson parameter b0 for
the complete transition i + f. In carrying this out,
gram corrects the ID labels when necessary and merges the two
files. The file is frequency sorted and used in the program
ENDBAND which writes the final file to output (replete with
ID labels for all parameters), and writes a fina]l file to
AFGL format for addition to the next edition of the AFGL Line
Parameter Atlas. ENDBAND also gives useful statistics on the

. data making up the band.

The final file is used with the old MSF to generate
a series of plots that visually display the changes that re-
sulted from the updating procedure. This presently includes
a plot of the changes in the line positions and several plots
of the changes in the line intensities. Examples of the plots
are given in Figures 5 to 9.
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The procedure discussed above has been successfully
applied to the 14 bands of H20 listed in Table 1.
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ABSTRACT

The dipole correlation function for molecular pressure
broadening is treated in a quantum theory which rigorously
satisfies the Fluctuation Dissipation Theorem on a microscopic
level. The two basic approximations in the theory are the
uncoupled-line and binary collision approximations. In the
present paper, the consequences of the formulation are anal-
yzed up to second order in the anisotropic molecular interac-
tion. An isotropic potential is also included, which, in
principle, is treated exactly. At large times it is shown
that the theory reduces to the well-known impact approxima-
tion. At short times, an autocorrelation function of Gaussian
form, with a renormalization of the initial state occupancy
is obtained. It is found that the qualitative features dis-
cussed above are unaltered in higher order perturbation theory.
The results imply that all time-derivatives of the autocorrela-
tion function at t = 0 exist. This further implies that all
moments of the lineshape function in the frequency domain
exist, hence that the lineshape function must decay "exponen-

tially" sufficiently far in the wings.
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tensive use has been made of the autocorrelation function

I. INTRODUCTION

In the calculation of molecular pressure broadening, ex-
1-3
for the dipole moment operator in the time domain. Using this
method, the power spectrum for absorbed or emitted radiation
is obtained from the Fourier transform of the autocorrelation
function. This result follows from the quantum analog of the
Wiener-Xhintchine theorem1 for classical correlation func-

4-12 Uhich may

tions. In spite of the diverse formulations
be found in the literature, it appears that certain aspects of
the theory remain incomplete or have not been adequately
discussed.

It is generally assumed that the far wings of spectral
transitions are strongly influenced by the small time behavior
of the autocorrelation function. However, any rigorous treat-
ment for small times must certainly satisfy the Fluctuation-
Dissipation Theorem (FDT).]"H'16 The FDT has been incorpor-

ated into a number of essentially phenomenological thec)r':ies,l?"19

20’21-Schofield complex~-time transformation.

using the Egelstaff
These theories force the FDT to be valid on a line-by-line
basis, using an autocorrelation function involving a number of
adjustable parameters, typically a time between collisions.

L and something analogous to the duration of collision, T4-

" To our knowledge, no microscopic formulation which satisfies

the FDT has been presented in the literature. In this paper

we provide such a formulation. The present theory will also
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provide an explicit microscopic description for the short-time
behavior of the autocorrelation function, and for the transi-
tion to the long-time regime where the impact approximation is
generally considered to be valid. These two aspects have re-
mained unclear in most previous formulations.

In the present paper we shall make essentially two approx-
imations; (a) the binary collision approximation, and (b) we

shall eventually ignore line-coupling effects.s’6

For problems
involving atmospheric densities, the binary collision approxi-
mation appears to be justified from experimental observations.
The neglect of line-coupling effects is more serious, however,
construction of a general theory which includes such effects
rigorously, and which also satisfies the FDT, appears to be a
more complicated problem, Withir the two approximations above,
we shall show, at small times, that the autocorrelation func-
tion for each line is of Gaussian form. This implies that all

17 of

time-derivatives exist at t = 0, hence that all moments
the lineshape function must also exist. The transition to the

long-time impact regime will also be examined.
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I1. GENERAL THEORY

LA il Jv-‘r"

We shall write the absorption coefficient (em™!) in the
form?’
atw) = f-ffngséﬂ X" (w) (11-1)
X"(w) = tanh (B2 Im P o739 [4(t) + ¢(-1)] (II-2a)
= (1 - P f@ q e eIVt 4 , (II-2b)
= Zﬂ Tex e T [6() - ¢(-1)] . (II-20)

In these equations, N,ad is the number density of radiating
molecules, B = (kBT)", and ¢(t) is the autocorrelation func-

tion given by

$(t) = Tr {pC(HID(0)+n(t)} , (II-3a)
¢(-t) = Tr {pCHINCO)P(~t)]} , (II-3b)
= Tr {pCHDNU(t) 1(0)} , (II-3¢)

where 1(t) is the Heisenberg operator

iHt iHt

UCt) = e X H(o) e K , (II-u)

and

o(H) = e BH/rp (o~BH) (II-5a)
= Bz , (II-5H)

is the canonical density matrix.
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The Hamiltonian H is for a system consisting of one radi-
ating (absorbing) molecule, and Np perturbers with which it
may interact.

The equivalence of formulas (II-2a) - (II-2c) is contained

in the time domain statement17

of the FDT, i.e.
¢(-t) = ¢(t + ipH) . (II-6)
This result is readily proven from Eqs. (IXI-3a - II-3¢) using

tiHt /A

cyclic invariance and the fact that e commute with p(H);

Eq. (II-6) must also be consistent with the relation

*
d(-t) = ¢(t) s (II-7)
which guarantees that a(w) is real.

From Eqs. (II-3a - II-3c¢) we may write

iHt , _iH (t-ipm)

$(t) = Z7'eTr{ll e ¥ *% e X } (II-8a)
¢(-t) = ¢(t + igh)
iH (t+in) | _iHt
= 27 letr{e ™K Yee A u} . (II-8Db)

In what follows it will be convenient to decompose the
Hamiltonian H as follows:

H = H + V 1] (II-g)

0
where Ho contains the unperturbed energies of the molecules
and any purely isotropic interactions, VO’ which do not in-
volve the internal states, i.e. V0 depends only on center of
mass separations. The perturbation V is then taken to contain

the anisotropic interactions between the radiator and the per-

turbing molecules.
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Now in Eqs. (II-82 - II-8b) we introduce the time-develop-

ment operator defined by

iHt iHyt

e M = e A U(t) ' , . 4(II-=10a)
iHt , lHot |

eH = u) T | ,(II-10b)

or, more generally, for complex t

iHz iHyz
e T = e A U(z) s (II-11a)

with adjoint relation
*
* .
iHz lH0z

eF = ut e T — .(II-11b)
From the above relations, one readily sees that U(t) is uni-

tary for real t. Making use of these definitions, we obtain

iHgt iHgt

$Ct) = v Trip(H U(t-iH} vty e T e F ), (II-12a)
and

d(-t) = ¢(t + igH)

iH t iHot

0
v Trip(Hy) eF 1 e K UCt)e UCt-igm) T} ,(II-12b)

where p(Ho) = e'BHO/Tr{e-BHO}, is the unperturbed density

matrix, and where v is the ratio

Zg - Tr{e'BHO}

= 20 . (II-13)
Z7 7 pple Py

<
1]

From Eq. (IT-12b) it ies clear, i- a trivial fashion, that
the FDT is still sati ;fied at this point. However, there are

ways of rewriting all of these equations which make identifica-
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tions far less obvious. For example, if we let t +- -t in
Eq. (IT-12a), we obtain
iH t iH.t
. . + ot . 0
$(-t) = v Tr{p(Ho) U(-t=-ifH) ¢ U(-t) *e” N1 p e A }.(II-14)

The equivalence of Eq. (II-12b) and Eq. (II-14) is now not
trivial, and it must be obtained from various identities which
we will presently derive. An even more subtle problem con-
cerns the following point. One does not obtain a correct ex-
pression for ¢(t+ipYi) by simply replacing t by (t+iBH) in the
right-hand side of Eq. (II-12a). The reason is, in the U(t)+
operator of Eq. (IJ-l12a), the two operations of complex time
translation t + t+ipfl and of taking the Hermitian adjoint do
not commute. We shall show that the correct procedure is to
eliminate the adjoint operation, and then to perform the com-
plex time translation.

The basic identity which we shall need is obtained as

%
follows; in Eq. (II-lla) we replace z by -z and obtain
* i *
iHz iHgz .
el =e K U(-z) . (II-15)

We now equate Lgs. (II-11b), (II-15) and obtain
* ) *
iH.z iH,z
P o Uter®y e
U(z) = e U(-z ) e X . (II-16)

Some useful special cases for real t are

iHgt iHgt
ue)t = e T u(-t) e F ,(II-17a)




iH t iH,t

0 0
L] U-t)T = " H ue) e T » ,(II-17b)
. iHgt iH t
Ut) = e ¥~ u-t)T e F . (II-17¢)

The equivalence of Egs. (II-12b), (II-14) for ¢(-t) can readily
h! . be established by starting from Eq. (II-12b), making use of
Eq. (IT-1€) with z = t - i, inserting Eq. (II-17c¢) for U(t),

and finally using cyclic invariance of the trace expression.
Next we return to the problem of correctly obtaining

¢(t+iph) from ¢(t). Starting fr§m Eq. (II-12a), we make use
of Eq. (IT-17a) to eliminate the adjoint operation. This con-
verts Eq. (II-12a) to read

iHOt iHot
6¢t) = v Tr{p(Hy) UCt-iph) i €K ~U(-t) & e™H } . (II-18)
The complex time traﬁslation t + t+iBh then gives

6 (t+igf) = v Trip(Hy) U(t) u

iHO(t+iBh) iHO(t'fi&K)
s e X U(-t-i) n eT T X } . (II-19)

Now inserting Eq. (II-17c¢) for U(t), Eq. (II-19) simplifies to
give our previous expression (II-14) for ¢(t+ipgh) = ¢(-t).

We have discussed the above points in some detail because
we will need to make use of similar manipulations tq verify
that the FDT is satisfied at later stages of the formulation.

For later purposes, it will also prove convenient to in-
troduce the integral equations for the U(t) operators. With
the boundary condition U(0) = 1, one obtains the integral

equations
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. t
UCt) =1 - & [ V(t") UCt") at! , (II-20a)
5 |

+ i% + .
UCE)" = 1 + & [ UCE')T V(t') dt' s (I1I-20b)
(13
with
iHgt iHyt
V(t) = et Ve 4 . (II-2Cc)

More gener;lly, for complex t, we write

. Z

UCz) = 1 - g [ V(z") U(z'") dz ,(II-21a)
0
iHoz' iﬂoz'

with V(z') = e i Ve 4 _ s (II-21D)

where the integration can be taken over any path in the com-
Plex z' plane where the integrand is analytic.

To conclude this section, it is interesting to compare
Eq. (II-12a) for ¢(t) with the result one obtains in an anal-
ogous theory which does not satisfy the FDT. In such a theory
which ignores so-called "back reaction,” p(H) is approximated

by the unperturbed density p(HO), and leads to the result

$(t) = Trlp(H T U eF i X Ut} . (II-22)
Comparison of Eqs. (IJ-12a), (II-22) shows that the more com-
plete theory:

Zg
(a) Contains the factor v = s

(b) Replaces a U(t) factor by U(t-ipH),
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Yy
B

=

v

(c) Contains a rearrangement of the various factors which -
cannot be eliminated using cyclic invariance of the
trace.

Items (a) and (b) above might have been anticipated, however,

item (c) is more subtle, and we shall refer to it as a "re-

ordering" effect.

41




ITII. UNCOUPLED-LINE AND BINARY COLLISION APPROXIMATIONS

In this section we shall make the two approximations dis-
cussed in the Introduction, namely the uncoupled-line and
binary'collision approximations. To facilitate these approxi-
mations, it is convenient to separate out the internal states
of the radiating molecule in the expression for Ho. Thus we

write
RI + HO , (III-1)

where HgI contains only the internal coordinates of the radi-
ating molecule. Then ﬁo contains all the rest of the unper-
turbed Hamiltonian, i.e. the internal coordinates of all per-
turbers, the translational coordinates of all molecules (in-
cluding the radiator), and the isotropic interactions between
the radiator and perturbers. The unperturbed density matrix
then factors as p(HO) = D(HgI) p(ﬁo). The operator p(ﬁo) can
also be further factored, however, it is convenient not to use

this at present.

We denote the eigenstates of ng by |jm>, where n. is the
magnetic quantum number, and where j stands for all other
quantum numbers necessary to specify the internal state. Now

in Eq. (II-12a) we take the trace over p(HgI) and find
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¢(t) = v Z : p(e.,) e i (e.,-€.,)t
. . j! % SR DA
333jdglg mymymeme 74 £ 4
v <3ymg|Ulgme>e<ipml |3 im}>
+ Trlp(Hy)<jim] [UCt-1B8) |§;m >e<i m (UCe) T3 fmE>, (1T1-2)
~BE.,
with peg,) = Ji/f (23+1) e”P€; . (III-3)
i ]

In obtaining the above result from Eq. (II-12a), we have used

the fact that

* 3 [ 0 * 0
1H0t R 1H0t 1HRIt R IHRIt
e A uwue K =Ze H pe H R

because the remainder of the unperturbed Hamiltonian (Ho) com-
mutes with p. It is again interesting to compare Eq. (III-2)
with the analogous result derived from Eq. (II-22) which does

not satisfy the FDT:

¢(t)

n
©
~
[y]
~
o

s sy sy 1 ' J.
13133 ¢ds MyMiMeMe 1

o <iimg|Ulieme>e<ifmt§]iims>

Tr{p(H,) <jfmflu(t)*|j§mi,>-<jim§IU(t)|jimi>} . (I1I-4)

Comparison of the above equations shows four differences:

(a) The factor of v = ZO/Z in Eq. (III-2),

(b) U(t) «»> U(t-igH),
(c) The difference in two statistical factors p(ej,) and
i
p(e. ),

Ji

(d) The different order of U relative to U+ in the trace

expresgions.
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Items (c) and (d) above arise from the "reordering" effect

discussed previously.

At this point we shall make the uncoupled line approxima-
tion, j}-= jf and ji = ji‘ In a separate publication, one of
the present authors (R. W. D.) will present a somewhat simpli-
fied approach which is meant to be applicable only in the far
wings. This formulation is carried out in the frequency do-
main, it satisfies the FDT, and it correctly includes all
possible line-coupling effects. We note that the uncoupled
line approximation eliminates part of the "reordering" effect
discussed above, i.e. p(eji) + p(cji) in this approximation.

If we now apply the uncoupled line approximation to Eq.
(III-2), and then make use of the Wigner-Eckhart theorem for
the } matrix elements, we obtain
oCt) = v T etes 25+ D <3 lullignl?

Jilfe o

- ek RIS , (III-S)

where the reduced matrix elements satisfy the symmetry relation

25 +D <3l lul 13210 = @3grnl<sgl Il 13p]° , (111-6)

and where Cif(t) is a correlation function given by

1
C,p(t) = 1
if l§3.+I5
i mimimfm%m

(jflmfmljfljimi)(jflm%mljfljimi)

Tedp (Hy)<j m} [UCt-160) |5 m>

<3eme|UCt)T]5mp>) . (III-7)

Ly
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Before proceeding to make the binary collision approxima-
tion, it is interesting to note the normalization properties
of Eqs. (III-5), (III-7). TFirst we note that Cif(o) # 1.‘
Rather, from Eq. (III-7) we obtain

m.é! Tr{p(Hy)<j;m} |UC-1iK) I ;m >}
11

- 1
€1£(0) = D

o Z (jflmfmljfljimi)(jflmfm'jfljim;!_) . (III-8)
Performing the sum over mg, m in Eq. (III-8) simply produces a

factor of § 1> and leads to

- 1 - . . .
Cip(0) = C.(0) = TEE;T-E. Tr{p(Hy)<j m; |UC-1BH) | m >}, (ITI-2)

1

Although this does not equal unity, we can write

or
-~ Cif(t)
Cif(t) = W , (I1I-11)

then Cif(O) = 1, and we can rewrite Eq. (III-5) as

plt) = j g 5(eji)|<ji|!u||jf>|2 e‘% (ejf-eji)t C;p(t),

i°f (I1I-12)
where
5(831) ERRY) p(sji)(Zji+1) Ci(O) (III-13)

We now show that B(Ej ) is simply a renormalized initial state
i

occupancy, in particular that
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§_ fles ) =1 L(IIXI-14)

To prove this, we combine Eqs. (III-8), (III-13), (III-14) to

give
5Ce. ) = v ] pley ) Trlp(H )<i.m, |UC-iB8)]5.ms>)
gi 3 jimi 3 0 i7i i1
= v Trip(H,) U(-iph)} , (III-15)

where the trace is now over the complete unperturbed density

matrix. However, it may readily be established that

Tri{p(Hy) UC-iBR)} = %— _— ,(II11-16)
0

from which the result (III-14) follows immediately.
Now the binary collision approximation to Eq. (III-7) is
simply

Np
Cif(t) = [qif(t)] » (ITI-17)

where NP is the number of perturbers, and with
9 (1) = 173%117 I Gelmem]3liim) Gelmim|3615;m))
i m mimemim
. Tr{pS(H0)<3imi|US(t-iBh)Ijimi>

- <jemUg(e)T (5 mL>) . (III-18)

In the expression (III-18), the subscript S on the p and U
operators denotes that these operators now correspond to a
single radiator and perturber.

One next invokes the same argument used by Baranger5 and

22,23

others. Namely, one assumes that qif(t) has the form
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riathan oM 3
...

‘A

Qs elt) = [1 + = Fip(t)] ,(ITI-19a)
Np
= [1 + N; Fif(t)] ,(III-lgb)

where Q is the normalization volume, and np is the perturber
density. Then in the limit of large Np, Eqs. (III-17),
(I11-19) yield

n, F..(t)
Ciplt) = e © M ,(IT1I-20a)
or

Ny [qQ..(t) - 1]
Cip(t) = e if . (ITI-20b)

In order to justify the form in Eqs. (III-19), we can
begin by noting from analogy with Eqs. (II-20), (II-21) that

the US operators in Eq. (III-18) can be written in the form

ug()t = 1+ Wt ,(III-21a)
Ug(t-1BH) = 1 + Wg(t-igH) ,(III-21D)
where
Wo(t) = - & } Vo(t') Ug(t!) dt' (III-22a)
s't) = - g s t S ’ -22a
woeyt = & } Ut vocen) ae (III-22Db)
s %1 Us S ,
: i t-3en ' ' ' T
Wg(t-igH) = - % é Vg(z') Uglz') dz L(171-22¢)

Then in Eq. (III-18), the term in the product of the U's cor-

responding to unity may readily be shown to sum to unity,
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which justifies the first term in Eq. (ITI-19a). The volume
dependence of the second term in Eq. (III-19a) will be estab-
lished at a later stage.

It is important, after having made the uncoupled line
and binary collision approximations, to be able to demonstrate
that the FDT is still rigorously satisfied. The proof that
this is, indeed, the case is given in the Appendix. Briefly,
the proof consists of first showing that the FDT is satisfied
provided

(note the exchange of indices i, f). In our binary collision
approximation, (III-20b), the condition (III-23) is clearly
satisfied provided we can show

The details of this proof are carried out in the Appendix. We
also remark, in the uncoupled-line and binary collision approx-
imations, that the reality condition, Eq. (II-7), is satisfied
provided C;r(t)" = €. (~t), i.e. if q ()" = q;p(~t). This
relation can be proven using manipulations similar to those
found in the Appendix.

Returning to Eq. (III-18), we can make use of Eqs. (III-

22) to write

L8




1 . . . . . .
[q;s(t)-1] [esrean il m'g atn (Jflmfm|3fljimi)(3flm%m|Jfljimi)
iMiMe

iy - ' -. L]
{Tr{pg(HyI<j mi |[Wg(t-ipH)|j;m,;>) Sy

+

o~ . +.
Tr{pS(H0)<3fmf|WS(t) ljfm%>} 6mimi

+

Tripg(Ho)<3 m} |Wg (t-1BR) |3;m >+ <i e JWg ()5 mp> D).
(II1-25)
Once again, we can compare this to the result one obtains
from Eqs. (II-22), (III-4) which do not satisfy the FDT. 1In
the simpler theory, ws(t-iBﬁ) is replaced by WS(t) in the
first and third terms of Eq. (III-25). In addition, in the
third term of Eq. (III-25), the order of the initial and final
state matrix elements is reversed in the simpler theory. This
is the only remaining "reordering" effect.
We also remark that the first two terms in Eq. (ITI-25)

3,24

roughly correspond to S(b) in Anderson theory, while

outer

the last term corresponds to Anderson's S(b).

inner® In grarh-
25

ical perturbation theory the two types of terms correspond

to self-energy and vertex corrections, respectively.
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IV. INVESTIGATION OF TIME-DEPENDENCE IN LOW-ORDER
PERTURBATION THEORY

It is clear, since the Ug operators in Egs. (II1-22)
satisfy integral equations, that it will be extremely diffi-
cult to rigorously treat the anisotropic interaction V to an
arbitrary order in perturbation fheory. In this section we
will therefore confine our discussion of the theory to second
order. However, as we shall point out, only the quantitative
details are altered if the theory is carried to third or
higher order. Moreover, we also point out that the present
theory satisfies the FDT order-by-order in perturbation theory.

In this section, in order to provide a more simplified
account, we shall treat the internal states of both the radi-
ator and perturber as non-degenerate, i.e., we shall ignore the
(2j+1)-fold degeneracy in the m indices. This also means that
we shall suppress the Clebsch-Gordan coefficients and the m
summations in Eqs. (III-18), (III-25), and shall set factors
of (2j+1) equal to unity. These details can easily be re-
tained, but are important only for numerical calculations,
which will not be attempted in this paper. As a final simpli-
fication in notation, we shall also drop the subscript S on
the pg, Ug, Wg, Vg operators which appear in Eqs. (III-18)-
(ITI-25), understanding that these operators now refer to a
single radiator and perturber.

We shall begin by considering the second term in Eq. (IIT-

25), which we now c¢implify to read
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Ke(t) = Tr (pCHY) <§ we)T (5.5} . (IV-1)

This term enters in‘an identical fashion in both the theory
which satisfies the FDT, and the one which does not. However,
before considering this term in detail, we briefly remark on
the other two terms of Eq. (III-25), which we also simplify

as

K;(t) = Tr {p(HO) <ji|W(t—iBH)lji>} , (IV-2)

Kig(t) = Tr {oCH )<, [Wet-ipm) |3 >e<i JueedTi o) L av-3)

Concerning Eq. (IV-2), at large times (|t]| >> BX) this term

can be approximated by
K;(t) = Tri{p(Hj) <31|W(t)|ji>} s (IV-y4)

and the discussion in this regime is essentially identical to
that which we present for Kf(t) at large t. At very small

times, Ki(t) approaches the finite constant

K;(0) = Tr{p(Hg) <ji|wc-iaﬁ)lfi>} , (IV=5)

and, as discussed in Seetion III, leads to a renormalization
of the initial state occupancy. The discussion of Eq. (IV-3)
is somewhat more complicated, and this will be given
separately.

In order to perform the trace in Eq. (IV-1), we need *he
resolution of the identity operator in terms of the product
states of Hy- This can be written

L, BERSE L < . (1v-6)
f .
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with |[3pteg,> = [3p>]at>]eg,> , (IV-7)

where |j%> denotes an internal state of the radiator, |J'>
denotes an internal state of the perturber, and where ‘*i'>

is an eigenstate of the Hamiltonian

0 _ x2v?

H-ISO S - TE— + VO(I‘) . (IV—B)

In Eq. (IV-8), V? = V2, with T = ;l';Z the relative coordin-
ate, m = mlm2/(ml+m2)Pthe reduced mass, and Vo(r) is the iso-
tropic pair potential. Since ﬁ, Vgs V do not depend on the
center of mass coordinate, ﬁ, of the pair, it can be seen

that the translational motion of the center of mass plays no

role in the subsequent theory. We thus have

n2y?
[- S5+ V()1 up> = e§|wi> . (Iv-9)

For unbound states IW§> can be taken as any suitably normal-
ized set of continuum eigenstates, and e = Xx*k%/2m, However,
if V4(r) leads to bound states, sums over |¢§> implicitly con-
tain a sum over the bound states. The unperturbed energy

associated with a state lijwi> can then be written

Ej Jt ° Es + € * €g . (IV-10)
f

If we now evaluate Fq. (IV-1l) in first order perturbation

theory using Eq. (III-22b), we obtain

kS (e) = ,—ﬁ-‘-g pep) pleg)e<ipdug|V]ipdvp> , (IV-11)
kJ

with
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e BEL/T  e~BERn . (IV-12)

in

o(ei)

The expression (IV-~1l) is seen to be a linear function of t
without any approximations. We note, however, that Kél)(t) is
pure imaginary, and therefore it contributes a phase shift,
rather than damping, to the autocorrelation function Cif(t).
It can also be shown, for multipole interactions, that Kél)(t)
vanishes when a sum over magnetic quantum numbers is per-
formed25 (which is suppressed here). In what follows, we
shall therefore neglect these first order phase shifts.

We next evaluate Kf(t) in second order perturbation
theory, and find

k(e = - L7 ptep) otepde I I<alv|e>|? £06) , (Iv-13)
A7 g% a0k

where, for simplicity, |a> = |jgdug>, |8> = l3ged'¥ge>, and

where
‘ _i(e -eB)t ]
- if . Le A -1 -
f(t) = - TE;:EET {t - in (eg_eﬁj } . (IV=1u)

An alternative and useful form for the f(t) function is

. 1 -
f(t) = — (1 cos(mast)]
aB

i

" [waBt - sin(maet)] , (Iv-15)
Wog

where, woB z (eu-es)/ﬁ. In this cecoad forr It is immediately
clear that the real part of f(t) is an even function of t,

while the imaginary part is odd. Also from Eqs. (IV-13),
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H (IV-15), we see that the real part of Kéz)(t) is always nega-

tive (gives damping).

| The time dependence of Kéz)(t) for long and short times

can now be deduced from a study of the f(t) function. First
we note that f(t) is a perfectly well-behaved function when
(ea-es) + 0. By expanding the exponential in Eq. (IV=-14),

we find
£(t) = % t? as (e -€g) + O . (IV-16)

Furthermore it is clear that the above result is pre-
cisely what we get in the small time limit t + 0. Hence, for

short times,

2
K2ty = = 27 ote) olexde § |<j A ST A TR AP
f 2 J X f f
L 5 JOAS

It (IV-17)
Thus as t -+ 0, K(Z)(t) is a real, quadratic function of time,
and from Eq. (III-20b), it leads to a correlation function of
Gaussian form.

In order to examine the long time behavior, we make use

of the identities26

Lim [1~cos(w 8t)]

t|re s w t ’ -

[ t] - 2“ 5¢ aB" | (IV-18)

af

Lim 1 Pr

[t]+e [“ust'Sin(“aBt)] =t — . (IV-19)
w“B’ aB

Hence the long time limit of Kﬁz)(t) is given by
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(2)
Ke™ " (t)

Lgl Z p(cJ)p(ei)

Jk J'J'k'

L ]

’<ijw§!Vlj%J'Wﬁ'>l ” 6(5' i e‘lJ'k')

- %1 E ) . pley) pleg)

k jearke
Ppr .
RS T VI teg.>|? . (IV=2y)
£ (€5 0k e300k’
The above result is identical to the impact approxima-
tion25’27 in second order perturbation theory. The appearance

of |t| in the damping term is also familiar in the impact
theory. If one assumes Eq. (IV-2C) to be valid for all times,
including the neighborhood of t = 0, the factor [t| leads to
singularities in the derivatives of Cif(t) at t = 0. This

immediately implies that the higher order moments17

of the
lineshape function (the Fourier transform of Cif(t)) do not
exist in the impact theory. As we have seen from Eq. (IV-17),
the correct damping of Cif(t) at small t is Gaussian, which
implies that all moments of the lineshape function are well-
defined and finite. In the frequency domain, these results
imply that the extreme far wings must decay in some "exponen-
tial" fashion, rather than the simple (w-wif)"2 decay predicted
by the impact theory.

For intermediate times, it is clear that the time depend-

ence of K(Z)(t) is complicated, and it will probably need to

be extracted numerically. A rough criterion for the inter-

55




mediate time region is <weg> t = 1, where <wyg> is some aver-
age energy difference. For a situation in which h<ma8>=kBT,
we estimate the transition region to occur at times of order
t = fi/kgT = BB = 2.6 x 107 '* sec, for T = 296K. It is then
clear that this is precisely the range where the difference
between W(t-ipfi) and W(t) begins to be important in the Ki(t)
term.

Before going on, we remark that the long time behavior
of the term ng)(t) (with W(t-ipX) = W(t)) can be obtained
from Eq. (IV-20) with the substitutions jf - ji’ j% + ji, and
with the imaginary term in Eq. (IV-20) changing sign. This
implies that the real parts of ng)(t) and Kéz)(t) add, while
the imaginary parts subtract. This is also familiar from the
impact theory.

A second item that can be disposed of at this point is
justification of the normalization volume dependence in the
second term of Eq. (III-19a), i.e. we now show that K§2)(t),
as given by Egs. (IV-17), (IV-20), is correctly proportional
to 1/Q2. To see this we rewrite Eq. (IV=12) as

pleg) = 5 e PR/ (E 1 e BERm) . (Iv-21)

jz"

In the limit of large 9, % 7 -+ 1 [ a°%", and the remain-

ge  (2m)?
ing factor of % in Eq. (IV-21) turns out to give the expected

% volume dependence of K§2)(t). To complete the proof, we

note that if |¢i> is a continuum wavefunction, it will contain

56




a normalization factor of %E, while bound state lw§> are nor-

malized independent of 2. Then in Eqs. (IV-17), (IV-20), if
|¢§> and |w§.> are both continuum states, the square of the
matrix element yields a factor 1/922. This is just what is
needed to turn the ﬁ, k' sums into integrals. Likewise one
sees that the volume dependence is correct for bound + free,
and bound + bound matrix elements.

- We next consider the more complicated quantity Kif(t) as
given by Eq. (IV-3). It is also interesting to compare this

with a quantity

-~ ~

Kig(t) = Trlo(H))<i g [W)T|5 > 0cs, [W() 5>} , (IV-22)

which obtains in the analogous theory where the FDT is not
satisfied. In comparing Egqs. (IV-3), (IV-22) we note that a
"reordering" effect remains. However, a careful examination
of these equations (including magnetic quantum numbers sup-
pressed here) shows that, to second order, the "reordering"
effect plays no role, and only the difference W(t) -+ W(t-igH)
is important. We also remark that if one confines the analy-
sis to second order perturbation theory, there are a number of
interesting cases where Kif and iif vanish. This happens for
linear and asymmetric rotor (radiating) molecules for the

case of dipole-dipole or dipole-quadrupole interactions, be-
cause one obtains diagonal reduced matrix elements of the
radiator's dipole moment operator. 1lnese resulits are also
3,24

i.e, S(b). makes no

familiar from Anderson theory, inner

contribution in such cases.




We note from Eqs., (IV-3), (IV-22) that Kif(t) and Kif(t)
are already at least of second order in V. Then to second
order, evaluation of the formulas for large t gives

(2) . »(2) _ 2]t
Kig (t) = Kig'(t) = 'Jrl' 2+ Z+ pleg) pleg)
Jk J'k'

< I VI3 T g ><3 g0 W V] g

This is, again, the impact result, and Kig)(t) subtracts from

the damping given by the K§2)(t) and K§2)(t) terms.

Next for short times, Eq. (IV-22) evaluates to give
~ 2
Kgg)(t) =7 7 pley) pleg)
1 2
Jk J'k!
o <3| VII g <T eI g VG gdup> . (IV-24)

This term is quadratic in time and subtracts from the damping
given by K§2)(t). However, at very short times we should
consider, instead of Rif(t), the function Kif(t) which satis-
fies the FDT. 1Its small time limit is

2 -
Kgg)(t) i I pleg) pleg) - [efHusR-0ge) & 1)

M2 g gefe

<jiszlvljiJ'Wiv><ij'WKvIvlij¢;>

- i I I ples) plep)

gk o
1 B (w 2=wq, 2, )
¢ —_— [e Jk %'k’ - 1)
Wrk~Yarke
. <jiJw;|V|jiJ'wi,><ij'w§.IVlijw§> . (IV-25)
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We note, although K(2)(t) contains a term linear in t, that
3 this term corresponds to a phase shift, rather than damping.
Hence we again find that the damping occurs quadratically at

small t. Finally, for completeness, we quote the general re-

sults for K(z)(t) and K(z)(t) in second order perturbation

theory;

(2)(t)

]
1
[ |

L Jg" ple)pCeg) <i dup(VII 0 b, ><i 0w, VI3 Jup>
k J'k

i (EJ'i"eJﬁ)t

[e ¥ - 1]

(egrgi-eg)

i (e pme ) (t-1880)
 Ley Uk Ik - 1]
(E -’-EJ'k')

. (IV-26)

The long time (|t]| >> B8H) limit (Eq. (IV-23) is obtained from
this formula by again using the identity (IV-18). The short
time limit leads directly to Eq. (IV-25). For K§2)(t), we

find
K20ty = - - F ecepotep) I l<iduplviifatepol® £
ﬁ Ji 'lin:'
3i , (IV-27)
with
X ‘ i (e -eB)(t-lsﬁ) ]
~ _ i . R e N - 1
f(t) = e -2 {(t-ign) + in = (e _~-€,.)
a B a B8
, (IV-28)

and where €y = ejiJi’ €g z ejiJ'i" It is not difficult to
explicitly show that our second-order result for [qif(t) - 11,
as obtained from Egqs. (IV-13), (IV-27), (IV~-26), satisfies
the FDT, and it appears that the FDT is satisfied order-by-
order in perturbation theory.
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V. DISCUSSION

Within the binary collision and uncoupled-line approxima-
tions, we have derived an expression for the dipole auto-
correlation function which rigorohsly satisfies the Fluctua-
tion Dissipation Theorem. We have shown hbw these results go
into the impact theory at large times. For short times we
have found that Cif(t) is damped in a Gaussian fashion. Al-
though our analysis in Section IV was confined to second order
perturbation theory in the anisotropic interaction, by going
to third order we can easily convince ourselves that the above
behavior is completely general, and only the details are al-
tered in higher order perturbation theory. These results im-
Ply that the lineshape function in the frequency domain must
decay in some "exponential"vfashion sufficiently far in the
wings.

Although we have refrained from labeling the present
formulation as a "unified" theory, we believe that it quali-
fies as such. One reason that we have avoided the above label
is that most authors of "unified" treatments are content to
show that their formulation goes into the impact limit at
large times, and for small times takes the form of the quasi-
static or statistical 1:1'1eoz'y.28"30

We have shown that the present theory, indeed, does re-

duce to the impact approximation at large times. However, it

is not clear that the small time limit of the present formula-




tion has very much in common with the standard statistical
theory.

One problem in establishing such a connection is that
most formulations of the statistical theory are what Smith,

et a131

have termed "scalar" theories; i.e. at some conven-
ient stage, the dependence of the potential on the internal
states is ignored, except possibly for a constant which may
depend on the various vibrational or electronic bands of in-
terest. In our present formulation, if the anisotropic inter-
action vanishes, Cif(t) = 1, and there is neither broadening
nor shift of the spectral transition. This result has also

S in a slightly different context,

been proven by Baranger
within the impact approximation.

Another aspect of the simple statistical theory also
deserves comment. In a very terse, but highly illuminating
paper, Yakimet332 has applied a "scalar" statistical theory
to far wing pressure broadening. By invcking the high energy

33 and using the method of stationary phase,

approximation,
Yakimets derives a result for the far wing lineshape function
for potentials of the form (o/r™). Similar results have been

obtained by Holstein3"

and others. The result for the (pseudo)
dipole-dipole case (n = 3) is that the far wing decays as

(w-wfi)", precisely the same dependence as the impact approx-
imation would give. Although the above result may have valid-
ity somewhere in the wings, our present formulation shows that

it cannot possibly be correct in the extreme far wings, which
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must be "exponential." It is clear that theorists such as
Yakimets and Holstein are well aware of the above limitations,
however, there appears to be a misconception among some
workers that the statistical theory is applicable in the ex-
treme wing region.

Finally, although our formulation has been completely
quantum mechanical, this does not appear to preclude the use
of semiclassical methods. In particular, the eigenstates
lwﬁ> of the isotropic Hamiltonian (IV-8) might be chosen to
be time-independent WKB wavefunctions. We hope to explore
this and other computational possibilities in a future

publication.
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APPENDIX
PROOF THAT THE FDT IS SATISFIED IN THE BINARY COLLISION
AND UNCOUPLED-LINE APPROXIMATIONS

The first step in the proof is to show, for an uncoupled-
line approximation of the form Eq. (III-f), that a sufficient
condition for the FDT to be satisfied is

The above relation applies to any uncoupled-line approximation,
and is not limited to the binary collision case.

Now, starting from Eq. (III-5), we have

o(-t) = v T ple. D25 +1)|<i ] |ull5e>]?

g i
-i (Ej -Ej ) t
e X f ‘i Cif(-t) . (A-2)

We next change names of dummy variables i + f, and make use of
the symmetry relation (III-6) for the reduced matrix elements.

This gives,

$(=t) = v .Z. O(Cj )(2ji+1)|<ii|‘ulljf>‘z
J;3f £

i (e. -e. )t
e X Jf 3i Ceq (-t) . (A-3)

Retaining this result, we next obtain, from Eq. (III-S),

the result,
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¢(t+ipx) = v Z D(Ej.)(zji"lr)l‘jillul|jf>|2
Jidf *

i (6. =€ )(t+iph)
e X If 3§ C; £ (E+iBH) . (A-W)

From Eq. (III-3), we note that

-B(C- -E . )
Je i = ples ) . (A-5)
Jg

D(eji) e

This gives

plt+iph) = v pleg 1235+ 1]<izful[3¢>1?

i (e. -ej "t
e X Jf I3 C, s (t+iBR) . (A-8)

Comparing Eqs. (A-3), (A-6) we see that a sufficient condition
that the FDT theorem (Eq. (II-6)) be satisfied is just Eq.
(A-1). It is then clear, in our binary collision approxima-
tion (III-20b), that (A-1l) is satisfied provided we can show

To prove the above result, we start from Eq. (III-18)
and construct qfi(-t). To carry this out, we let t + =-t,
ji 5 jf, and it is also convenient to make the following
changes in the dummy m-summation indices:

t

| S .
me m;
m! +m

i f

m; + mg

m -+ -m . (A-8)
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This leads to the result

o \ = = l '_ | " : t . - o P
Qg; (~t) 73;7T mimimgm%m (3;1m} mljlljfmf)(:jilmi mljiljfmf)

Tripg(Hy)<jpgme [Ug(-t-iph) | eml>

24,35 of Clebsch~

We next make use of the symmetry properties
Gordan coefficients to obtain the identity
(jilmi-mljiljfm%)(jilmi-mljiljfmf)
(23¢+1) o . :
= m (Jflmfmljfljimi%(Jflm%mljfljimi) . (A-10)
i

Upon inserting this result into Eq. (A-9), we obtain

1 o .
U3 -8) = T3y m.m!gfm%m (Gelmem|3eligms) (Gelmim|§ 13 mi)
11

Trlpg(Hy)<] g |Ug (~t=181) | gmp>

Retaining this result, we now want to compute qif(t+iaﬁ),
starting from Eq. (III-18) for qif(t). Recalling our discus-
sion in Section II, we have to be careful in performing this
exercise. In particular, we have to eliminate the adjoint
operation in Eq. (ITI-18), before making the complex time
translation t + t + ip¥. Thus we make use of Eq. (II-17a)

to write
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ri maan
f

<jgmeUg(e) |3 pmp>

-

iHgt iHt
<jemgle H Ug(-t) e” K |jemi>

iH t iHt
e X <jeme|Ug(=t)|jemi> e K . (A-12)

Now inserting (A-12) into Eq. (IJI-18), and then letting
t +» t+iph, we find

. 1 . . L. e ls vs e

Tr{ps(Ho)<jimi|US(t)Ijimi>
i
c e K (t+ih) <jeme|Ug(~t-iBM)|jmi>

il
e e K (t+ipn)} . (A-13)

Application of cyclic invariance gives

iHgt iHgt
Tr{ } = Trle™ X <i;m}|UgCt)|3m;> e TH

. ps(ﬂo)<jfmf|usc-t-ian)ljfm§>} . (A-1u)

We then note that
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iﬁot iHot
e” X <j;m|Ug(t)|j;m;> e K

iHot iHOt
<jimi|e' ] Ug(t) e ] Ijimi>

<3 ;m} |UgC-t)7|3;m > ., (A-15)

where we have made use of Eq. (II-17b) in the last step.
Inserting (A-15) into (A-14) yields
Tr { } =

> Pg(Hy)<igme [Ug(-t-ig) |3 mi>)

. <jimi'us('t)+|jimi>} . (A-16)

Upon inserting (A-16) into (A-13), we find

> 1 [ ] [ ] L] [
qQ; (t+ipH) = (Jelmem|jeliom,)(jolmim|jc1j.m!)
if 73+ D mimigfm%m glmgm|iglymy ) (3elmim|3 el m

Tr{ps(ﬁo)<jfmflusc-t-isn)ljfm}>

<j;m |Ug -2V 3,;m;>) . (A-1T)

The above result is seen to be identical to Eq. (A-1ll) for

Qg (-t). This completes the proof,
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